Смесь молочная Nestogen 1 1050г с 0месяцев
Смесь Nestogen 1 была специально разработана для обеспечения сбалансированного здорового питания и комфортного пищеварения малыша. Смесь Nestogen 1 с пребиотиками и уникальными лактобактериями L.reuteri способствует улучшению моторики кишечника, формированию регулярного мягкого стула, полезной микрофлоры и предотвращению колик. Здоровая кишечная микрофлора необходима для поддержания, развития и укрепления иммунитета.
Лютеин и омега-3 ПНЖК способствуют развитию мозга. Смесь содержит сбалансированный комплекс витаминов и минеральных веществ для гармоничного роста и развития.
Смесь Nestogen 1 отличается преобладанием белков молочной сыворотки для улучшения качества белка и обеспечению комфортного пищеварения. Смесь Nestogen 1 предназначена для кормления здоровых детей с рождения в случаях, когда грудное вскармливание невозможно, и является молочной составляющей рациона ребенка.
!Переход на новую смесь должен осуществляться постепенно!
ВНИМАНИЕ! Товар представлен в старом и новом дизайнах упаковок, вариант в поставке не гарантирован!
Состав смеси в новом дизайне упаковки: Обезжиренное молоко, деминерализованная молочная сыворотка, лактоза, мальтодексин, смесь растительных масел (низкоэруковое рапсовое, подсолнечное, подсолнечное высокоолеиновое, кокосовое), молочный жир, пребиотики (галактоолигосахариды (ГОС) и фруктоолигосахариды (ФОС)), цитрат кальция,эмульгатор ( соевый лецитин), цитрат калия, цитрат натрия, фосфат калия, хлорид магния, витаминный комплекс(С (L-аскорбат натрия,У(DL-альфа-токоферолла ацетат), PP (никотинамид),D-пантотенат кальция,аскорбилпальмитат (С), DL-альфа-токоферолла ацетат (Е), никотинамид (PP), D-пантотенат кальция, B1 (тиамина мононитрат), А (ретинола ацетат), B6 (пиридоксин гидрохлорид), B2 (рибофлавин), фолиевая кислота (B9),R (фитоменадион), Д-биотин,Д3 (холекальциферол), B12 (цианкобламин)),хлорид калия, хлорид натрия, рыбий жир, культура лактобактерий L. 6 КОЕ/г), таурин,инозит, сульфат железа, сульфат цинка,нуклеотиды, L-карнитин, сульфат меди, сульфат марганца, йодид калия, лютеин, селенат натрия.
Состав смеси в старом дизайне упаковки: Обезжиренное молоко,мальтодексин, деминерализованная молочная сыворотка, лактоза, смесь растительных масел (низкоэруковое рапсовое, подсолнечное, подсолнечное высокоолеиновое, кокосовое), молочный жир, пребиотики (галактоолигосахариды (ГОС) и фруктоолигосахариды (ФОС)), цитрат кальция,эмульгатор ( соевый лецитин), цитрат калия,фосфат калия, хлорид магния, витамины (L-аскорбат натрия, аскорбилпальмитат (С), DL-альфа-токоферолла ацетат (Е), никотинамид (PP), D-пантотенат кальция (B5), ретинола ацетат (A), тиамина мононитрат (B1), пиридоксин гидрохлорид (B6), рибофлавин(B2), D3 холекальциферол (Д), фитоменадион (К), фолиевая кислота (В9), цианкобаламин (В12), D-биотин (B7)),цитрат натрия, хлорид натрия, хлорид кальция,хлорид калия, культура лактобактерий L. reuteri (не менее 8,9х10^5 КОЕ/г), таурин, сульфат железа, инозит, сульфат цинка, L-картнитин, сульфат меди, сульфат марганца, йодид калия, селенат натрия.
ВАЖНОЕ ПРИМЕЧАНИЕ. Идеальной пищей для грудного ребенка является молоко матери. Перед тем как принять решение об искусственном вскармливании с использованием детской смеси, обратитесь за советом к медицинскому работнику. Возрастные ограничения указаны на упаковке товаров в соответствии с законодательством РФ. Продукт изготовлен из сырья, произведенного специально одобренными поставщиками, без использования генетически модифицированных ингредиентов, консервантов и красителей.
Переход на новую смесь должен осуществляться постепенно.
Примечание: Для сохранения живых бактерий вскипяченную воду следует остудить примерно до температуры тела (37 ̊С) и затем добавить сухую смесь. Для приготовления смеси необходимо использовать мерную ложку, заполненную без горки. Разведение неправильного количества порошка большего или меньшего по сравнению с количеством, указанным в таблице может привести к обезвоживанию организма ребенка или нарушению его питания. Указанные пропорции нельзя изменять без совета медицинского работника. В этом возрасте питание ребенка становится более разнообразным (постепенно вводятся каши, овощи, фрукты, мясо и рыба). Проконсультируйтесь с медицинским работником, прежде чем вводить прикорм в меню ребенка. Если раннее введение продуктов прикорма рекомендовано вашим доктором, то уменьшите количество потребления детской смеси согласно рекомендации.
Смесь Nestle Nestogen 1 700г с 0месяцев
Cмесь Nestogen 1 специально разработана для обеспечения сбалансированного здорового питания и комфортного пищеварения малыша. Смесь с пребиотиками Prebio и уникальными лактобактериями L.reuteri способствует улучшению моторики кишечника, формированию регулярного мягкого стула, здоровой микрофлоры и уменьшению колик.
- Предназначена для кормления здоровых детей с рождения в случаях, когда грудное вскармливание невозможно
- Содержит сбалансированный комплекс витаминов и минеральных веществ для гармоничного роста и развития
В течение первых месяцев жизни малыша его пищеварительной системе необходимо адаптироваться к новым условиям. Это естественный процесс развития, который может приводить к расстройствам пищеварения, таким как колики или запоры, а также вызывать чрезмерный плач. Смесь Nestogen 1 содержит уникальные лактобактерии L.reuteri и пребиотики для комфортного пищеварения и регулярного мягкого стула.
Состав: обезжиренное молоко, мальтодекстрин, деминерализованная молочная сыворотка, лактоза, смесь растительных масел (низкоэруковое рапсовое, подсолнечное, подсолнечное высокоолеиновое, кокосовое), молочный жир, пребиотики (галактоолигосахариды (ГОС) и фруктоолигосахариды (ФОС)), цитрат кальция, эмульгатор (соевый лецитин), цитрат калия, фосфат калия, хлорид магния, витамины (L-аскорбат натрия, аскорбилпальмитат (С), DL-альфа-токоферола ацетат (Е), никотинамид (РР), D-пантотенат кальция (В5), ретинола ацетат (А), тиамина мононитрат (В1), пиридоксин гидрохлорид (В6), рибофлавин (В2), D3 холекальциферол (Д), фитоменадион (К), фолиевая кислота (В9), цианкобаламин (В12), D-биотин (В7)), цитрат натрия, хлорид натрия, хлорид кальция, хлорид калия, культура лактобактерий L. reuteri1 (не менее 8,9х105 КОЕ/г), таурин, сульфат железа, инозит, сульфат цинка, L-карнитин, сульфат меди, сульфат марганца, йодид калия, селенат натрия. Упаковано в модифицированной атмосфере с азотом.
Важное примечание:
- Для питания детей раннего возраста предпочтительнее грудное вскармливание. Идеальной пищей для грудного ребенка является молоко матери. Грудное вскармливание должно продолжаться как можно дольше. Перед тем как принять решение об искусственном вскармливании с использованием детской смеси, обратитесь за советом к медицинскому работнику.
- Продукт следует готовить непосредственно перед каждым кормлением. Точно следуйте инструкции. Оставшийся после кормления продукт не подлежит хранению и последующему использованию. Во время кормления необходимо поддерживать ребенка, чтобы он не поперхнулся.
Смесь Nestogen (Нестожен) 1 сухая молочная с пребиотиками и пробиотиками с рождения 350 г
Краткое описание
Смесь Nestogen? 1 была специально разработана для обеспечения сбалансированного здорового питания и комфортного пищеварения малыша. Смесь Nestogen? 1 с пребиотиками Prebio? и уникальными лактобактериями L.reuteri способствует улучшению моторики кишечника, формированию регулярного мягкого стула, здоровой микрофлоры и уменьшению колик. Смесь Nestogen? 1 отличается преобладанием белков молочной сыворотки для улучшения качества белка и комфортного пищеварения.
Смесь Nestogen?1 предназначена для кормления здоровых детеи? с рождения в случаях, когда грудное вскармливание невозможно, и является молочнои? составляющеи? рациона ребенка. Она содержит сбалансированныи? комплекс витаминов и минеральных веществ для гармоничного роста и развития.
Состав
Обезжиренное молоко,мальтодексин, деминерализованная молочная сыворотка, лактоза, смесь растительных масел (низкоэруковое рапсовое, подсолнечное, подсолнечное высокоолеиновое, кокосовое), молочный жир, пребиотики (галактоолигосахариды (ГОС) и фруктоолигосахариды (ФОС)), цитрат кальция,эмульгатор ( соевый лецитин), цитрат калия,фосфат калия, хлорид магния, витаминный комплекс (С, Е, ниацин, пантотеновая кислота, А, В1, В6, В2, Д, К, фолиевая кислота, В12, биотин),цитрат натрия, хлорид натрия, хлорид кальция,хлорид калия, культура лактобактерий L. reuteri (не менее 8,9х105 КОЕ/г), таурин, сульфат железа, инозит, сульфат цинка, L-картнитин, сульфат меди, сульфат марганца, йодид калия, селенат натрия. Упаковано в модифицированной атмосфере с азотом.
Способ применения и дозировка
1. Прежде чем приступить к приготовлению детской смеси, вымойте руки.
2.Тщательно вымойте бутылочку, соску и крышку, чтобы на них не осталось следов молока.
3.Прокипятите их в течение 5 минут. Накройте до использования.
4. Прокипятите питьевую воду в течение 5 минут и затем остудите до 37 -C.
5.Руководствуясь таблицей кормления, налейте в бутылочку точно отмеренное
количество теплой воды.
6.Перед использованием мерной ложки, находящейся в упаковке, необходимо тщательно ее вымыть и полностью высушить. Для приготовления смеси используйте только мерную ложку, заполненную без горки.
7. Руководствуясь таблицей кормления, добавьте точное количество мерных ложек сухого порошка в соответствии с возрастом Вашего ребенка. 8. Закройте бутылочку и взболтайте ее до полного растворения порошка.
9. После приготовления смеси упаковку с продуктом следует плотно закрыть. После вскрытия использовать в течение 3-х недель, не рекомендуется хранить в холодильнике. До и после вскрытия продукт хранить при температуре не выше 25 -C и относительной влажности воздуха не более 75 %.
Особые указания
Предупреждение: Продукт следует готовить непосредственно перед каждым кормлением. Точно следуйте инструкции. Оставшийся после кормления продукт не подлежит хранению и последующему использованию. Во время кормления необходимо поддерживать ребенка, чтобы он не поперхнулся.
Предупреждение: Использование некипяченой воды и непрокипяченных бутылочек, а также неправильное хранение, приготовление и кормление могут привести к неблагоприятным последствиям для здоровья ребенка.
Примечание: Для сохранения живых бактерий вскипяченную воду следует остудить примерно до температуры тела (37 -С) и затем добавить сухую смесь.

Сухая молочная смесь Nestogen 1 (c рождения) 300 г 55073
Для сохранения живых бактерий вскипяченную воду следует остудить примерно до температуры тела (37 ̊С) и затем добавить сухую смесь. Для приготовления смеси необходимо использовать мерную ложку, заполненную без горки. Разведение неправильного количества порошка большего или меньшего по сравнению с количеством, указанным в таблице может привести к обезвоживанию организма ребенка или нарушению его питания. Указанные пропорции нельзя изменять без совета медицинского работника. В этом возрасте питание ребенка становится более разнообразным (постепенно вводятся каши, овощи, фрукты, мясо и рыба). Проконсультируйтесь с медицинским работником, прежде чем вводить прикорм в меню ребенка. Если раннее введение продуктов прикорма рекомендовано вашим доктором, то уменьшите количество потребления детской смеси согласно рекомендации.
До и после вскрытия продукт хранить при температуре не выше 25 °С и относительной влажности воздуха не более 75 %. После вскрытия использовать в течение 3х недель, не рекомендуется хранить в холодильнике.
3,3
Пищевая ценность: Белки (г):1,34
Пищевая ценность: Углеводы (г):7,8
Энергетическая ценность (Ккал):67
Энергетическая ценность (кДж):281
Срок годности (дни):540.0
НЕСТОЖЕН-1 смесь сух. молоч. с 0 мес. с пребиот. 350г (Nestle)
«Смесь Nestogen® 1 предназначена для кормления здоровых детей с рождения и является молочной составляющей рациона ребенка в случаях, когда грудное вскармливание невозможно. Смесь содержит белковый компонент, а также сбалансированный комплекс витаминов и минеральных веществ для гармоничного роста и развития.
Преимущества продукта:
Смесь Nestogen® 1 содержит натуральные пищевые волокна Prebio® (пребиотики ГОС/ФОС), которые помогают пищеварению и способствуют формированию регулярного стула. Лактобактерии L.reuteri, входящие в состав смеси, помогают созреванию пищеварительной системы, способствуют становлению здоровой микрофлоры и эффективно уменьшают колики, срыгивания и дискомфорт у малыша.»
«Идеальной пищей для грудного ребенка является молоко матери. Перед тем как принять решение об искусственном вскармливании с использованием детской смеси, обратитесь за советом к медицинскому работнику. Возрастные ограничения указаны на упаковке товаров в соответствии с законодательством РФ. Смесь Nestogen® 1 предназначена для кормления здоровых детей с рождения и является молочной составляющей рациона ребенка в случаях, когда грудное вскармливание невозможно.
Обезжиренное молоко, деминерализованная молочная сыворотка, мальтодекстрин, лактоза, смесь растительных масел (низкоэруковое рапсовое, подсолнечное, подсолнечное высокоолеиновое, кокосовое), молочный жир, пребиотики (галактоолигосахариды (ГОС) и фруктоолигосахариды (ФОС)), соевый лицитин, цитрат кальция, комплекс витаминов, цитрат калия, хлорид магния, хлорид натрия, хлорид кальция, хлорид калия, таурин, сульфат железа, культура лактобактерий Lactobacillus reuteri, сульфат цинка, L-карнитин, сульфат меди, йодид калия, селенат натрия. Изготовлено с использованием обезжиренного молока и молочной сыворотки.
«ПРЕДУПРЕЖДЕНИЕ: Продукт следует готовить непосредственно перед каждым кормлением.

Nestogen (Нестожен) 1 смесь: отзывы, инструкция, состав
Состав: сыворотка молочная деминерализованная, молоко обезжиренное (27%), растительные масла (подсолнечное с высоким содержанием олеиновой кислоты, кокосовое, рапсовое с низким содержанием эруковой кислоты, подсолнечное, масло Мортиереллы Альпины), лактоза, цитрат кальция, хлорид калия, цитрат натрия, цитрат магния, гидроксид калия, жир рыбий, лецитин соевый, цитрат калия, витамины (С, E, ниацин, пантотеновая кислота, тиамин (В1), а, В6, рибофлавин (В2), фолиевая кислота, K, биотин, D, В12), культура лактобактерий Lactobacillus Reuteri1 (не менее 8,9х105 КОЕ / г (CFU / g)) , таурин, сульфат железа, инозитол, сульфат цинка, регулятор кислотности (лимонная кислота), L-карнитин, сульфат меди, сульфат марганца, йодид калия, селенат натрия. Упаковано в защитной среде.
1Лактобактерии Lactobacillus reuteri (DSM 17938) по лицензии BIOGaia A. B. на Патент №2435844.
ТАБЛИЦА ПИЩЕВОЙ ЦЕННОСТИ
Питательная ценность | Единицы | на 100 g/г порошка | на 100 ml/мл готовой смеси |
---|---|---|---|
Энергетическая ценность | кДж (kJ)/ккал (kcal) | 2144/512 | 281/67 |
Жиры | г/g | 26,4 | 3,5 |
Из них насыщенные | г/g | 6,1 | 0,8 |
Докозагексаеновая кислота | мг/mg | 51 | 6,7 |
Арахидоновая кислота | мг/mg | 51 | 6,7 |
Линолевая кислота | г/g | 4 | 0,5 |
Α- линоленовой кислоты | мг/mg | 340 | 44 |
Углеводы | г/g | 57,6 | 7,5 |
Из них сахара | г/g | 57,6 | 7,5 |
Лактоза | мг/mg | 57,6 | 7,5 |
Белки (казеин / белки молочной сыворотки 40/60) | г/g | 11 | 1,4 |
Зола | г/g | 3 | 0,4 |
Натрий | мг/mg | 165 | 21,6 |
Калий | мг/mg | 625 | 81,8 |
Хлориды | мг/mg | 350 | 45,8 |
Кальций | мг/mg | 365 | 47,8 |
Фосфор | мг/mg | 205 | 26,8 |
Магний | мг/mg | 70 | 9,2 |
Влага | г/g | 2 | |
Витамин А | мкг ЕР/µg ER | 480 | 62,8 |
Витамин D | мкг/µg | 7,2 | 0,9 |
Витамин Е | мг/mg ТЕ | 12 | 1,6 |
Витамин К | мкг/µg | 40 | 5,2 |
Витамин С | мг/mg | 80 | 10,5 |
Тиамин (витамин В1) | мг/mg | 0,58 | 0,08 |
Рибофлавин (витамин В2) | мг/mg | 1,2 | 0,16 |
Ниацин (PP) | мг/mg | 4,5 | 0,6 |
Витамин В6 | мг/mg | 0,4 | 0,05 |
Фолиевая кислота | мкг/µg | 80 | 10,5 |
Пантотеновая кислота | мг/mg | 5 | 0,7 |
Витамин В12 | мкг/µg | 1,5 | 0,2 |
Биотин | мкг/µg | 15 | 1,96 |
Холин | мг/mg | 95 | 12,4 |
Инозитол | мг/mg | 70 | 9,2 |
Таурин | мг/mg | 35 | 4,6 |
L-карнитин | мг/mg | 9 | 1,2 |
Железо | мг/mg | 5,1 | 0,7 |
Йод | мкг/µg | 110 | 14,4 |
Медь | мг/mg | 0,41 | 0,05 |
Цинк | мг/mg | 5,7 | 0,7 |
Марганец | мкг/µg | 110 | 14,4 |
Селен | мкг/µg | 15 | 1,96 |
Лактобактерии L.![]() | КУO/г (CFU/g) | не менше 8,9×105 |
БЗМЖ Сухая смесь Nestogen Комфорт 1 с рождения 350г …
Изготовитель:
ООО «Нестле Россия»
Описание товара:
Смесь «Nestogen 1 Комфорт PLUS» — питание, предназначенное для коррекции минимальных проявлений колик, запоров и срыгиваний. Комплекс бифидобактерий и пребиотиков помогает нормализовать состав кишечной микрофлоры и улучшить пищеварение, крахмал способствует коррекции срыгиваний, а сниженное содержание лактозы — устранению пищеварительного дискомфорта. Смесь Nestogen 1 Комфорт PLUS подходит для использования в качестве единственного источника питания для детей с рождения. ВАЖНОЕ ПРИМЕЧАНИЕ Для питания детей раннего возраста предпочтительнее грудное вскармливание. Идеальной пищей для грудного ребенка является молоко матери. Грудное вскармливание должно продолжаться как можно дольше. Перед тем как принять решение об искусственном вскармливании с использованием детской смеси, обратитесь за советом к медицинскому работнику. Продукт произведен из сырья, произведенного специально одобренными поставщиками, без использования генетически модифицированных ингредиентов, консервантов, красителей и ароматизаторов.
Состав товара:
Обезжиренное молоко, смесь растительных масел (пальмовый олеин, низкоэруковое рапсовое, кокосовое, подсолнечное), сыворотка молочная деминерализованная, лактоза, крахмал (картофельный, кукурузный), пребиотики (ГОС, ФОС), цитрат кальция, соевый лецитин, цитрат калия, хлорид магния, аминокислоты (L-фенилаланин, L-гистидин, L-карнитин), хлорид натрия, фосфат кальция, витамины (L-аскорбат натрия (С), DL-альфа-токоферола ацетат (Е), никотинамид (РР), кальция D-пантотенат (В5), тиамина мононитрат (В1), ретинола ацетат (А), пиридоксин гидрохлорид, рибофлавин (В2), фолиевая кислота (В9), филлохинон (К), D-биотин (В7), D3 холекальциферол (Д), цианкобаламин (В12)), таурин, железа (II) сульфат, инозит, сульфат цинка, цитрат натрия, культура бифидобактерий (не менее 10^6 КОЕ/г), сульфат меди, сульфат марганца, йодид калия, селенат натрия. Упаковано в модифицированной атмосфере с азотом.
Способ приготовления:
Прежде чем приступить к приготовлению смеси, вымойте руки. Тщательно вымойте бутылочку, соску и крышку, чтобы в них не осталось следов молока. Прокипятите их в течение 5 минут. Накройте до использования. Прокипятите питьевую воду в течение 5 минут и затем остудите до 37°С. Руководствуясь таблицей кормления, налейте в прокипяченную бутылочку точно отмеренное количество теплой воды. Перед использованием мерной ложки, находящейся в упаковке, необходимо тщательно ее вымыть и полностью высушить. Для приготовления смеси используйте только мерную ложку, заполненную без горки. Руководствуясь таблицей кормления, добавьте точное количество мерных ложек сухого порошка в соответствии с возрастом ребенка. Закройте бутылочку и взболтайте ее до полного растворения порошка. После приготовления смеси упаковку с продуктом следует плотно закрыть. После вскрытия использовать в течение 3-х недель, не рекомендуется хранить в холодильнике. До и после вскрытия продукт хранить при температуре не выше 25 градусов и относительной влажности воздуха не более 75%.
Меры предосторожности:
Продукт следует готовить непосредственно перед каждым кормлением. Точно следуйте инструкции. Оставшийся после кормления продукт не подлежит хранению и последующему использованию. Во время кормления необходимо поддерживать ребенка, чтобы он не поперхнулся. Использование некипяченой воды и непрокипяченных бутылочек, а также неправильное хранение, приготовление и кормление могут привести к неблагоприятным последствиям для здоровья ребенка.
Сгорание в дизельных двигателях
Сгорание в дизельных двигателяхХанну Яэскеляйнен, Магди К. Хаир
Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.
Abstract : В дизельных двигателях топливо впрыскивается в цилиндр двигателя ближе к концу такта сжатия. Во время фазы, известной как задержка воспламенения, топливо распыляется на мелкие капли, испаряется и смешивается с воздухом.По мере того как поршень продолжает приближаться к верхней мертвой точке, температура смеси достигает температуры воспламенения топлива, вызывая воспламенение некоторого количества предварительно смешанного топлива и воздуха. Остаток топлива, которое не участвовало в сжигании с предварительной смесью, расходуется на фазе сгорания с регулируемой скоростью.
Компоненты процесса горения
Сгорание в дизельных двигателях очень сложно, и до 1990-х годов его подробные механизмы не были хорошо изучены. В течение десятилетий его сложность, казалось, не поддавалась попыткам исследователей раскрыть его многочисленные секреты, несмотря на доступность современных инструментов, таких как высокоскоростная фотография, используемая в «прозрачных» двигателях, вычислительная мощность современных компьютеров и множество математических моделей, предназначенных для имитации горения в дизельном топливе. двигатели.Применение лазерного изображения к обычному процессу сгорания дизельного топлива в 1990-х годах было ключом к значительному углублению понимания этого процесса.
В этой статье мы рассмотрим наиболее распространенную модель сгорания для обычного дизельного двигателя . Это «обычное» сгорание дизельного топлива в первую очередь регулируется смешиванием, возможно, с некоторым предварительным сгоранием, которое может происходить из-за смешивания топлива и воздуха перед воспламенением. Это отличается от стратегий сжигания, которые пытаются значительно увеличить долю происходящего горения предварительно приготовленной смеси, например, различные ароматы низкотемпературного горения.
Основная предпосылка сжигания дизельного топлива — это его уникальный способ высвобождения химической энергии, хранящейся в топливе. Для выполнения этого процесса кислород должен поступать в топливо особым образом, чтобы облегчить сгорание. Одним из наиболее важных аспектов этого процесса является смешивание топлива и воздуха, которое часто называют приготовлением смеси .
В дизельных двигателях топливо часто впрыскивается в цилиндр двигателя ближе к концу такта сжатия, всего на несколько градусов угла поворота коленчатого вала до верхней мертвой точки [391] .Жидкое топливо обычно впрыскивается с высокой скоростью в виде одной или нескольких струй через небольшие отверстия или сопла в наконечнике инжектора. Он распыляется на мелкие капельки и проникает в камеру сгорания. Распыленное топливо поглощает тепло из окружающего нагретого сжатого воздуха, испаряется и смешивается с окружающим высокотемпературным воздухом под высоким давлением. По мере того как поршень продолжает приближаться к верхней мертвой точке (ВМТ), температура смеси (в основном воздуха) достигает температуры воспламенения топлива. Быстрое воспламенение некоторого количества предварительно смешанного топлива и воздуха происходит после периода задержки воспламенения.Это быстрое зажигание считается началом сгорания (а также концом периода задержки зажигания) и отмечается резким повышением давления в цилиндре по мере сгорания топливно-воздушной смеси. Повышенное давление в результате предварительно смешанного сгорания сжимает и нагревает несгоревшую часть заряда и сокращает задержку перед воспламенением. Это также увеличивает скорость испарения оставшегося топлива. Распыление, испарение, смешивание паров топлива с воздухом и сгорание продолжаются до тех пор, пока все впрыскиваемое топливо не сгорит.
Сгорание дизельного топлива характеризуется обедненным общим соотношением A / F. Наименьшее среднее соотношение A / F часто наблюдается в условиях максимального крутящего момента. Чтобы избежать чрезмерного дымообразования, соотношение A / F при пиковом крутящем моменте обычно поддерживается выше 25: 1, что намного выше стехиометрического (химически правильного) отношения эквивалентности около 14,4: 1. В дизельных двигателях с турбонаддувом соотношение A / F на холостом ходу может превышать 160: 1. Таким образом, избыточный воздух, присутствующий в цилиндре после сгорания топлива, продолжает смешиваться с горящими и уже сгоревшими газами на протяжении процессов сгорания и расширения. При открытии выпускного клапана происходит выброс избыточного воздуха вместе с продуктами сгорания, что объясняет окислительный характер выхлопных газов дизельных двигателей. Хотя сгорание происходит после того, как испаренное топливо смешивается с воздухом, образует локально богатую, но горючую смесь, и достигается надлежащая температура воспламенения, общее соотношение A / F бедное. Другими словами, большая часть воздуха, подаваемого в цилиндр дизельного двигателя, сжимается и нагревается, но никогда не участвует в процессе сгорания. Кислород в избыточном воздухе помогает окислять газообразные углеводороды и окись углерода, снижая их концентрацию в выхлопных газах до чрезвычайно малых.
Следующие факторы играют основную роль в процессе сгорания дизельного топлива:
- Модель нагнетаемого воздуха , его температура и кинетическая энергия в нескольких измерениях.
- Распыление впрыскиваемого топлива, проницаемость, температура и химические характеристики.
Хотя эти два фактора являются наиболее важными, существуют и другие параметры, которые могут существенно повлиять на них и, следовательно, играть второстепенную, но все же важную роль в процессе горения.Например:
- Конструкция впускного канала , которая сильно влияет на движение наддувочного воздуха (особенно когда он входит в цилиндр) и, в конечном итоге, на скорость смешения в камере сгорания. Конструкция впускного канала также может влиять на температуру наддувочного воздуха. Это может быть достигнуто за счет передачи тепла от водяной рубашки нагнетаемому воздуху через площадь поверхности впускного отверстия.
- Размер впускного клапана , который регулирует общую массу воздуха, вводимого в цилиндр за конечное время.
- Степень сжатия , которая влияет на испарение топлива и, следовательно, на скорость смешивания и качество сгорания.
- Давление впрыска , которое контролирует продолжительность впрыска для данного размера отверстия сопла.
- Геометрия отверстия сопла (длина / диаметр), которая контролирует проникновение струи, а также распыление.
- Геометрия распылителя , которая напрямую влияет на качество сгорания за счет использования воздуха. Например, при большем угле распылительного конуса топливо может располагаться наверху поршня и за пределами чаши сгорания в дизельных двигателях с прямой камерой сгорания с открытой камерой.Это условие может привести к чрезмерному дыму (неполному сгоранию) из-за лишения топлива доступа к воздуху, имеющемуся в чаше сгорания (камере). Широкий угол конуса также может привести к разбрызгиванию топлива на стенки цилиндра, а не внутри камеры сгорания, где это необходимо. Топливо, разбрызгиваемое на стенку цилиндра, со временем соскребет вниз в масляный поддон, где сократит срок службы смазочного масла. Поскольку угол распыления является одной из переменных, влияющих на скорость смешивания воздуха с топливным жиклером рядом с выходным отверстием форсунки, он может оказывать значительное влияние на общий процесс сгорания.
- Конфигурация клапана , который контролирует положение форсунки. Двухклапанные системы обеспечивают наклонное положение форсунки, что подразумевает неравномерное распыление, что приводит к нарушению смешивания топлива и воздуха. С другой стороны, конструкции с четырьмя клапанами допускают вертикальную установку форсунок, симметричное расположение распылителей топлива и равный доступ к доступному воздуху для каждого из распылителей топлива.
- Положение верхнего поршневого кольца , которое регулирует мертвое пространство между верхней контактной площадкой поршня (область между верхней канавкой поршневого кольца и верхней частью днища поршня) и гильзой цилиндра.Это мертвое пространство / объем улавливает воздух, который сжимается во время такта сжатия и расширяется, даже не участвуя в процессе сгорания.
Поэтому важно понимать, что система сгорания дизельного двигателя не ограничивается камерой сгорания, распылителями форсунок и их непосредственным окружением. Скорее, он включает в себя любую часть, компонент или систему, которые могут повлиять на окончательный результат процесса сгорания.
###
От чего горит огонь? Почему один огонь — ревущий ад, в то время как другой едва ползет? Огонь — это химическая реакция, в которой энергия в виде тепла выделяется. произведено.Когда лесное топливо горит, есть химическое соединение кислорода воздуха с древесным материалом, смола и другие горючие элементы, встречающиеся в лесной среде. Этот процесс известен как возгорание. Горение — это цепная реакция, химически подобная фотосинтезу в обеспечить регресс. Фотосинтез требует большого количества тепла, которое выделяется солнце. Процесс горения высвобождает это тепло. Огромный количество тепла, которое выделяется в процессе горения, является основной причиной того, что тушение лесных пожаров — такая сложная задача, и почему использование предписанный пожар — сложный и требовательный процесс, требующий знающих и опытные люди. Процесс горения или возгорания иногда называют быстрым. окисление. Это похоже на образование ржавчины на железе или гниение мертвой древесины в лесу, кроме процесс резко ускоряется. Пожар начинается с возгорания. В спичка — обычное устройство зажигания. Трение создает достаточно тепла для воспламенения фосфора в конце спички. Произойдет возгорание, и спичка загорится. Для начала процесса сгорания необходимо тепло. Однажды начавшись, огонь производит собственное тепло.Пожары на дикой земле возникают от таких источников тепла, как спички, угли. от сигарет, сигар или трубок, костров, мусорных костров, выхлопных искр от железнодорожные локомотивы, искры от тормозных колодок или горячих ящиков на железнодорожных вагонах. молния, самовозгорание, раскаленный пепел и поджоги. Огненный треугольникТребуются три вещи в правильном сочетании перед возгоранием и сгоранием — Heat, Oxygen and Fuel .
Тепло — это энергия Источники тепла:
Солнце — главный источник тепла. С непрерывной подачей тепла (от сам процесс горения) воспламенение дополнительного топлива будет продолжаться как пока присутствует достаточно кислорода. Таким образом очевидно, что эти три элемента должны присутствовать и удовлетворительно вместе до того, как горение может произойти и продолжиться. Для простоты мы называем это Треугольником Огня. Удалите любую из трех сторон или элементов. и огонь перестанет гореть. Ослабить любой, и огонь ослабнет.Увеличивать любой один или несколько элементов, и огонь усилится. Вооруженный с этими знаниями пожарный или назначенная горелка могут многое сделать, чтобы управлять огнем. Демонстрация ВНИМАНИЕ: банка сильно нагревается! Не трогай это без защиты. Маленьким детям не следует выполнять это упражнение. без присмотра взрослых. Есть несколько способов сломать или изменить огненный треугольник. Один из примеров того, как можно сломать треугольник, можно сделать с помощью короткого свеча и банка.Зажечь свечу и поставьте на ровную поверхность. После хорошо горит, переверните банку на свечу. Через короткое время свеча погаснет. Это происходит из-за того, что весь кислород внутри емкости был израсходован горящая свеча и дополнительный кислород не может попасть в свечу из-за банка. Прежде чем поставить банку горящая свеча, у вас были все ингредиенты, необходимые для горения; нагревать от спички, топливо в свече и кислород из воздуха. Зажгите свечу заново.Этот раз, возьмите ножницы, отрежьте фитиль под пламенем и удалите свеча. Опять огонь погаснет через короткий промежуток времени, когда остаток фитиля, оставшийся на ножницах, потребляется. На этот раз у тебя было много кислорода в воздухе, но вы удалили топливо. Тот же принцип используется при борьбе с лесными пожарами. Удалите тепло, кислород или топливо, и огонь погаснет. При тушении пожара цель состоит в том, чтобы остановить возгорание путем удаления или изменение одной или нескольких сторон треугольника. Стадии горения: пламя этапы (см. рисунки из лаборатории) Температура предварительного подогрева топлива повышена до точки, при которой газы начать улетучиваться Испаряются летучие вещества в топливе до воспламенения Пламя достигается температура воспламенения топлива и сгорает начинается Переходное топливо частично расходуется при сгорании, в то время как пламя продолжается в порциях топлива, приводящих к возникновению тления и дыма поколение Тлеющее сгорание топлива практически завершено при наличии кислорода. имеется и тление продолжается, что приводит к дымообразованию Раскаленная ступень горения с ограниченным содержанием кислорода Четыре наиболее важные стадии сгорания для предписанных горелок: предварительное зажигание (топливо готово загореться) пламенное активное горение Начало переходного дыма тление остаточного дыма Тушение огня и дыма поколение (сегмент по подавлению) Когда начался лесной пожар, мы пытаемся удалить кислородную сторону треугольника. тушив огонь антипиреном, пеной, грязью или водой в мелком спрей или туман.Они заменят кислород вокруг топлива воздействует на одну сторону огненного треугольника. Они также поглощают тепло и, таким образом, изменяют тепловую сторону треугольника. Замедлители покроют топливо и защитят его от тепла даже после вода испарилась. Они также подавить горение пламенем химическим действием. Пена также покрывает топливо и служит дольше, чем вода. Они уменьшают тепло, а также подачу кислорода к топливу. Они прилипают к вертикальному топливу и могут легко наноситься по земле. единицы измерения. Вода поглощает огромное количество тепла, особенно при нанесении в виде тумана. Каждая капля поглощает большое количество тепла, что превращает воду в горячий газ или пар (пар). Горячий пар затем рассеивается ветром в атмосферу. Однако вода тяжелая и ее сложно доставить на линию огня. в труднодоступных местах. А также есть возможность выбежать в самый неподходящий момент и потерять Пожар. В условиях леса один из наиболее важных подходов к подавлению Wildfires — это удаление третьей стороны треугольника — топлива. Топливо удаляется путем создания пожарной линии, разделяющей топливо. Когда лесной пожар горит до линии огня, топлива больше нет и огонь гаснет. Линия огня обычно изготавливается агрегатом трактор-плуг или вручную. (В западной части США используются бульдозеры и ручные инструменты из-за крутых каменистых условий.) На некоторых участках используются вертолетные экипажи и специализированная наземная техника. Удаление топлива Удаление источника топлива — это самый распространенный метод борьбы с лесными пожарами. Этот метод не тушит огонь. Огонь продолжает гореть до тех пор, пока топливо внутри линии огня не будет потребляется. Удаление топлива в путь огня предотвращает распространение огня. Медленно продвигающийся огонь, горит разреженная земля Топливо можно проверить, проложив пожарный трубопровод до минерального грунта. Горячий, быстро развивающийся огонь может потребовать нескольких линий огня, сгорающих топливо между линиями огня и огнем или их комбинация. Хорошая процедура тушения пожара часто представляет собой умелую комбинацию удаления топлива и тепло и кислород.Поэтому, когда вы при тушении пожара следует подумать о том, как лучше всего использовать персонал и оборудование для удаления одной или всех сторон огненного треугольника 1. Огонь — это — выберите ответ -a. химическая реакцияb. молекулярная реакцияc. надуманный ответ на определенные условияd. атомная реакция 2. Тепловую энергию, выделяемую огнем, можно рассматривать как накопленную энергию от — выберите ответ -a. неизвестные источники b. продукт фотосинтезаc. атомное действиеd. солнце 3. Три ножки огненного треугольника — выберите ответ -a.огонь, солнце, атмосфераb. тепло, топливо, энергияc. температура воспламенения, кислород, заправлен. спичка, листья, ветер 4. Огонь — это — выберите ответ -a. взрывb. цепная реакцияc. загадочное явление. результат клеточного сбоя 5. Огненные стадии огня, пламенеющие стадии — это — выберите ответ -a. предварительный нагрев, предварительное зажигание, пламя, горение, накал b. предварительное зажигание, пламя, горение, остаточное, тлеющееc. предварительный нагрев, пламя, горение, тление, тление. предварительный нагрев, предварительное зажигание, пламя, переход, тление, тление 6. Двумя наиболее важными стадиями пламени для предписанных горелок являются: — выберите ответ -a. пылающий, тлеющийb. пылающий, переходныйc. переходный, тлеющий. тлеющий, светящийся 7. Тушение или удержание установленного огня состоит из: — выберите ответ -a. снижение температуры или ограничение кислорода b. удушение или охлаждениеc. охлаждение или ограничение кислорода. ограничение топлива или охлаждения |
Глава 11: Горение (Обновлено 31.05.10)
Глава 11: Горение (Обновлено 31.05.10) Глава 11: Сжигание
(Спасибо
to Дэвид
Bayless за письменную помощь.
этот раздел)
Введение — До этого точка тепла Q во всех задачах и примерах была либо заданной значение или было получено из отношения Первого закона.Однако в различных тепловые двигатели, газовые турбины и паровые электростанции тепло полученные в процессе сгорания с использованием твердого топлива (например, уголь или дрова). жидкое топливо (например, бензин, керосин или дизельное топливо), или газообразное топливо (например, природный газ или пропан).
В этой главе мы познакомимся с химией и термодинамика горения типовых углеводородных топлив — (C x H y ), в котором окислителем является кислород, содержащийся в атмосферном воздухе. Обратите внимание, что мы не будем рассматривать сжигание твердого топлива или сложные смеси и смеси углеводородов, входящих в состав бензин, керосин или дизельное топливо.
Атмосферный воздух содержит примерно 21% кислорода (O 2 ) по объему. Остальные 79% «прочих газов» в основном азот (N 2 ), поэтому предположим, что воздух состоит из 21% кислорода и 79% азота, объем. Таким образом, каждый моль кислорода, необходимый для окисления углеводорода, равен сопровождается 79/21 = 3,76 моля азота. Используя эту комбинацию молекулярная масса воздуха становится 29 [кг / кмоль]. Обратите внимание, что это предполагается, что азот обычно не подвергается каким-либо химическим воздействиям. реакция.
Процесс горения — Основной процесс сгорания можно описать с помощью топлива ( углеводород) плюс окислитель (воздух или кислород), называемый Реагенты , которые подвергаются химическому процессу, выделяя тепло, чтобы сформировать Продукты горения таким образом, чтобы масса сохранялась. в простейший процесс сгорания, известный как стехиометрический Сгорание , весь углерод в топливе образует диоксид углерода (CO 2 ) и весь водород образует воду (H 2 O) в продуктах, поэтому мы можем записать химическую реакцию следующим образом:
где z известен как стехиометрический коэффициент для окислителя (воздуха)
Обратите внимание, что эта реакция дает пять неизвестных: z, a, b, c, d, поэтому нам нужно решить пять уравнений.Стехиометрический горение предполагает отсутствие в продуктах избыточного кислорода, поэтому d = 0. Остальные четыре уравнения мы получаем в результате уравновешивания числа атомов каждого элемента в реагентах (углерод, водород, кислород и азота) с числом атомов этих элементов в продукты. Это означает, что никакие атомы не разрушаются и не теряются в реакция горения.
Элемент | Количество в реактивах | = | Количество товаров | Сокращенное уравнение |
Углерод (C) | х | а | а = х | |
Водород (H) | л | 2б | b = y / 2 | |
Кислород (O) | 2z | 2a + b | г = а + Ь / 2 | |
Азот (N) | 2 (3.76) z | 2c | c = 3,76z |
Обратите внимание, что образующаяся вода может находиться в паре или жидкая фаза, в зависимости от температуры и давления продукты сгорания.
В качестве примера рассмотрим стехиометрическое горение метана (CH 4 ) в атмосферном воздухе. Приравнивание моляра коэффициенты реагентов и продуктов получаем:
Теоретическое соотношение воздух и воздух-топливо -The минимальное количество воздуха, которое позволит полностью сгорать топливо называется Теоретическая Air (также именуемый Стехиометрический воздух ).В этом случае продукты не содержат кислорода. Если мы поставляем меньше теоретического воздуха, тогда продукты могут содержать углерод монооксида (CO), поэтому обычной практикой является подача более теоретический воздух, чтобы предотвратить это явление. Это превышение Воздух приведет к появлению кислорода в продукты.
Стандартная мера количества воздуха, используемого в процесс сгорания — Air-Fuel Коэффициент (AF), определяемый следующим образом:
Таким образом, учитывая только реагенты метана при сжигании теоретическим воздухом, представленным выше, получаем:
Решенная задача 11.1 — дюймов В этой задаче мы хотим разработать уравнение горения и определить соотношение воздух-топливо для полного сгорания н-бутана (C 4 H 10 ) с а) теоретическим воздухом и б) 50% избытком воздуха.
Анализ продуктов сгорания — Горение всегда происходит при повышенных температурах и мы предполагаем, что все продукты горения (включая воду пар) ведут себя как идеальные газы. Поскольку у них другой газ постоянных, удобно использовать уравнение состояния идеального газа в условия универсальной газовой постоянной:
В анализе продуктов сгорания нет представляет ряд интересных объектов:
1) Что такое процентный объем конкретных продуктов, в частности углекислого газа (CO 2 ) и углерода монооксид (CO)?
2) Что такое роса точка водяного пара в продуктах сгорания? Это требует оценка парциального давления паровой составляющей воды продукты.
3) Существуют экспериментальные методы объемного анализ продуктов сгорания, обычно проводится на Dry Базис , дающий процент объема всех компонентов, кроме водяного пара. Это позволяет просто метод определения действительного воздушно-топливного отношения и использованного избыточного воздуха в процессе горения.
Для идеальных газов мы находим, что мольная доля y i i-го компонента в смеси газов при определенном давлении P
а температура T равна объемной доле этого компонента.
Т.к. из молярного отношения идеального газа: P.V = N.R u .T,
у нас:
Кроме того, поскольку сумма объемов компонентов V i должен равняться общему объему V, имеем:
Используя аналогичный подход, определяем частичную давление компонента с использованием закона парциальных давлений Дальтона:
Решенная проблема 11.2 — дюймов эта проблема Пропан (C 3 H 8 ) сжигается с 61% избытком воздуха, который поступает в камеру сгорания при 25 ° С.Предполагая полное сгорание и полное давление 1 атм. (101,32 кПа), определите а) соотношение воздух-топливо [кг-воздух / кг-топливо], б) процентное содержание двуокиси углерода в продуктах по объему, и c) температура точки росы продуктов.
Решенная проблема 11,3 — дюймов эта проблема Этан (C 2 H 6 ) сжигается атмосферным воздухом, и объемный анализ сухие продукты сгорания дает: 10% CO 2 , 1% CO, 3% O 2 и 86% № 2 .Развивать уравнение горения, и определить а) процент превышения воздух, б) соотношение воздух-топливо и в) точка росы при сгорании. продукты.
Анализ горения по первому закону — Основная цель горения — выработка тепла за счет изменения энтальпия от реагентов к продуктам. Из Первого Закона уравнение в контрольном объеме без учета кинетической и потенциальной энергии изменений и, если не делать никаких работ, имеем:
, где суммирование ведется по всем продукты (p) и реагенты (r).N означает количество молей каждого компонента, а h [кДж / кмоль] относится к молярной энтальпии каждый компонент.
Поскольку существует ряд различных веществ нам нужно установить общее эталонное состояние для оценки энтальпия, обычно выбирают 25 ° C и 1 атм, что составляет обычно обозначается надстрочным индексом o. Проф. С. Бхаттачарджи из Государственный университет Сан-Диего разработал экспертную систему на базе Интернета в < www.thermofluids.net > звонил ТЕСТ ( т г E xpert S система для Т гермодинамика) в который он включил набор таблиц свойств идеального газа, все основанные на по энтальпии h o = 0 по этой общей ссылке.Мы адаптировали некоторые из этих таблиц специально для этого раздела, и их можно найти в следующая ссылка:
Горение Таблицы молярной энтальпии
В качестве примера снова рассмотрим полное сгорание метана (CH 4 ) с теоретическим воздухом:
Обратите внимание, что в реагентах и продуктах В приведенном выше примере у нас есть основные элементы O 2 и N 2 как а также соединения CH 4 , CO 2 и H 2 O.Когда соединение образуется, изменение энтальпии называется изменением энтальпии. Энтальпия формации , обозначенной h f o , и для нашего примера:
Вещество
Формула
hfo [кДж / кмоль]
Двуокись углерода
CO 2 (г)
-393 520
Водяной пар
H 2 O (г)
-241 820
Вода
H 2 O (л)
-285 820
Метан
CH 4 (г)
-74,850
где (г) относится к газу, а (л) относится к жидкость.
Знак минус означает, что процесс Экзотермический , т.е. тепло выделяется при образовании соединения. Обратите внимание, что энтальпия образования основных элементов O 2 и N 2 составляет нуль.
Сначала рассмотрим случай, когда достаточно теплопередача таким образом, чтобы и реагенты, и продукты находились на 25 ° C и давление 1 атм, и что водный продукт является жидким. С нет заметного изменения энтальпии, уравнение энергии становится:
Это тепло (Qcv) называется энтальпией . горения или нагрева Стоимость топлива.Если продукты содержат жидкую воду, тогда она на выше Теплотворная способность (как в нашем примере), однако, если продукт содержит водяной пар, то это нижний предел . Теплотворная способность топлива. В энтальпия сгорания — это наибольшее количество тепла, которое может быть высвобождается заданным топливом.
Температура адиабатического пламени — Противоположная крайность приведенного выше примера, в котором мы оценили энтальпия горения — это случай адиабатического процесса, в котором тепло не выделяется.Это приводит к значительной температуре увеличение количества продуктов сгорания (обозначается адиабатическим Температура пламени ), которая может быть уменьшается за счет увеличения воздушно-топливной смеси.
Решенная задача 11.4 — Определить температура адиабатического пламени для полного сгорания Метан (CH 4 ) с 250% теоретического воздуха в адиабатическом контрольном объеме.
Это уравнение может быть решено только итеративным методом. метод проб и ошибок с использованием таблиц Sensible Энтальпия против температуры для всех четырех компоненты продукции — CO 2 , H 2 O, O 2 , и N 2 .Быстрый приближение к температуре адиабатического пламени может быть получено следующим образом: при условии, что продукты полностью состоят из воздуха. Такой подход был представил нам Potter и Somerton в их Schaum’s Очерк термодинамики для инженеров , в котором они предположили, что все продукты имеют номер N 2 . Мы считаем, что более удобно использовать воздух, предполагая репрезентативное значение особого Теплоемкость воздуха : C p, 1000K = 1,142 [кДж / кг.K].
Таким образом, суммируя все моли продуктов, получаем:
Используя таблицы Sensible Энтальпия в зависимости от температуры , мы оценили энтальпия всех четырех продуктов при температуре 1280К.Этот в результате общая энтальпия составила 802 410 [кДж / кмоль топлива], что составляет чрезвычайно близко к требуемому значению, что оправдывает такой подход.
Задача 11.5 — — Определите адиабатическую температуру пламени для полное сгорание пропана (C 3 H 8 ) с 250% теоретического воздуха в адиабатическом контрольном объеме [T = 1300 КБ].
______________________________________________________________________________________
Инженерная термодинамика, Израиль
Уриэли под лицензией Creative
Общедоступное авторское право — Некоммерческое использование — Совместное использование 3.0 Соединенные Штаты
Лицензия
Топливо-воздушная смесь — AOPA
Правильная наклона способствует повышению производительности двигателя и долговечности
Кен Гарднер
Правильная работа поршневого или поршневого авиационного двигателя требует значительно большего внимания и технических навыков, чем его автомобильный собрат.
Одной из таких областей технических навыков является правильный выбор и последующее регулирование топливно-воздушных смесей, обычно называемое обеднением или обогащением смеси.Процесс действительно следует назвать регулированием смеси, поскольку оператор может управлять как обедненным, так и богатым режимами. Распространенное заблуждение, особенно среди пилотов-студентов, заключается в том, что для поршневых авиационных двигателей требуется регулирование состава смеси, а для автомобильных двигателей — нет. Это неверно, и тот, кто проехал на автомобиле по дороге к Пайкс-Пик, может сказать вам.
Карбюраторы автомобильных и авиационных двигателей содержат устройства, которые автоматически изменяют соотношение компонентов смеси. Однако эти устройства работают в зависимости от диапазонов мощности и не чувствительны к изменениям плотности воздуха.Большинство автомобилей никогда не добираются до Пайкс-Пик, а те, которые базируются в высокогорных районах, обычно требуют замены жиклеров карбюратора для удовлетворительной работы. В свете повседневных условий эксплуатации регулирование смеси было бы неприятностью в серийном автомобиле.
Хотя многие легкие самолеты, такие как Piper J-3 Cub, Taylorcraft B-12 и т. Д., Работали достаточно хорошо без регуляторов смеси, они могли бы обеспечить и будут обеспечивать более удовлетворительную работу, если бы они были оснащены ими.Такое устройство наиболее желательно, особенно на уровнях, превышающих высоту плотности 5000 футов.
Все двигатели внутреннего сгорания воздушные; следовательно, они весьма чувствительны к любым изменениям давления и качества воздуха, которым они дышат. Ни поршневые, ни газотурбинные двигатели не «засасывают» вытесняемый ими воздух; скорее, воздух нагнетается в двигатель атмосферным давлением. То же самое и с нагнетателем, который просто смещает свой объем с гораздо большей скоростью и подает воздух в двигатель с давлением выше атмосферного до заданного перепада.
Поскольку атмосферное давление уменьшается с высотой, точно так же будет сила, доступная для проталкивания воздуха в двигатель. Снижение атмосферного давления также приводит к расширению воздуха, в результате чего он становится менее плотным, поэтому воздух, попадающий в двигатель, содержит меньше кислорода из-за расширения.
В таких условиях выходная мощность безнаддувного двигателя (дышащего исключительно атмосферным давлением) будет пропорциональна атмосферному давлению на любой заданной высоте.Снижение плотности воздуха может еще больше усугубить потерю мощности, если поток топлива не будет уменьшен, чтобы соответствовать меньшему количеству кислорода, связанному с менее плотным воздухом.
Газотурбинный двигатель оснащен барометрическим регулятором подачи топлива, который определяет эти изменения и автоматически регулирует расход топлива в соответствии с ними. Хотя устройство аналогичного типа (автоматический контроль смеси или AMC) используется на некоторых поршневых двигателях, большинство из них не имеют их. Следовательно, регулирование состава смеси становится необходимым на эшелонах полета выше 5000 футов высоты по плотности (DA) для удовлетворительной работы двигателя.Обратите внимание, что мы не упомянули экономию топлива, и не зря. Экономия топлива — вторичная, а не основная причина регулирования смеси.
Несомненно, вы много слышали об идеальной смеси. Такие названия, как стехиометрический и химически правильный, используются для улучшения описания идеальной смеси, к которой должен стремиться каждый хороший пилот. (Также не существует единственной идеальной смеси для поршневого авиационного двигателя или штатного автомобильного двигателя.) Стехиометрическая смесь — это смесь, имеющая такое соотношение топлива и кислорода, которое приведет к отсутствию обоих по завершении сгорания — отсутствие топлива или кислорода. остаются в отработанных газах.Однако такая смесь не подходит для всех режимов работы двигателя и более совершенна по определению, чем по применению. Химически правильный вариант еще более сбивает с толку.
При полной взлетной мощности двигателю самолета требуется полная богатая смесь. Термин «полностью обогащенный» в этом конкретном приложении описывает смесь, максимально обогащенную без существенной потери мощности. Такая смесь действительно приводит к потере некоторой мощности; однако потери незначительны, а добавленный поток топлива значительно способствует внутреннему охлаждению двигателя в то время, когда двигатель нуждается в этом больше всего.Таким образом, компромисс между мощностью и охлаждением является хорошим.
Такая смесь действительно была бы «идеальной смесью» для этих требований. Только что описанные условия взлетной смеси возникают при полностью открытой дроссельной заслонке, при полностью богатой смеси и условиях окружающей среды на уровне моря. Та же самая взлетная смесь была бы слишком богатой и практически невыносимой в Денвере при температуре 90 градусов по Фаренгейту.
С другой стороны, взлет на полной мощности из Атлантик-Сити на уровне моря в день 0 градусов по Фаренгейту был бы признаком скудности даже при полностью богатой системе контроля смеси.В этих условиях из-за плотности воздуха ниже уровня моря двигатель фактически развивал бы большую, чем обычно, полную номинальную мощность.
Соотношения смесей определенно влияют на характеристики горения. Хотя вам не нужно знать фактические пропорции соотношения компонентов смеси, например, 8: 1, вы должны быть знакомы с эффектами с точки зрения поведения двигателя. Соотношения смесей варьируются от богатого от 6 до 1 до бедного от 18 до 1, в зависимости от конструкции камеры сгорания и условий эксплуатации.
Большинство пилотов широко распространено мнение, что бедные смеси горят сильнее, чем богатые, и поэтому производят наибольшую мощность. Это убеждение вводит в заблуждение и редко, если вообще когда-либо, является правильным. В идеальных условиях стехиометрическая смесь дает самое горячее пламя. Однако это не обязательно относится к смеси с наибольшей мощностью. Количество смеси, вводимой в цилиндр, больше зависит от выходной мощности, чем незначительные различия в соотношении.
Расширяющиеся свойства смеси, подаваемой в цилиндр, играют важную роль в развитии мощности.Например, увеличение проектной степени сжатия приведет к значительному увеличению мощности, но с меньшим повышением температуры сгорания. Фактически, температура выхлопных газов в двигателях с более высокой степенью сжатия ниже, потому что большее количество тепла, выделяемого при сгорании, преобразуется в работу. Таким образом, если расширительные силы немного более богатой смеси приводят к увеличению выходной мощности, то температура сгорания не является единственным существенным фактором.
Более того, бедная смесь 16: 1 не будет гореть так же горячо, как богатая смесь 8: 1.И бедные, и богатые смеси дают температуру пламени ниже стехиометрической. Бедная смесь горит медленнее, чем нормальная или богатая смесь, и при этом двигатель дольше подвергается действию температуры сгорания. Именно этот фактор больше, чем любой другой, заставляет двигатель работать более горячим на обедненных смесях.
Теперь давайте применим эти факты к некоторым реальным ситуациям с использованием Cessna 182 Skylane. Все взлеты на высоту до 5000 футов DA должны производиться на полном газу с полностью богатой смесью. Нашим первым примером будет взлет в Канзас-Сити.DA находится примерно на уровне моря. Мы набираем высоту 400 футов над взлетно-посадочной полосой и снижаем мощность до 75 процентов для набора высоты. Достигнув 5000 футов DA, мы покидаем высоту, где полная богатая смесь была необходима для взлета и набора высоты.
Поскольку все карбюраторы не совсем одинаковы по своим характеристикам дозирования, мы проверим смесь на этом этапе. Осторожно уменьшите регулировку смеси от полного богатого положения к обедненному. Если двигатель стал немного более плавным, это означает, что смесь была слишком богатой.Верните регулятор смеси в режим полного обогащения и повторите процедуру. Прекратите наклоняться в точке, где произошло увеличение плавности работы.
Если, с другой стороны, такого увеличения плавности работы не произошло и двигатель действительно стал шероховатым из-за продолжающейся обедненной смеси, верните смесь в полностью богатую и оставьте ее; он был достаточно худым.
Cessna 182 оснащена безнаддувным двигателем (NA), и, если иное не указано производителем двигателя, 75-процентный набор высоты на двигателе NA всегда должен осуществляться с богатой смесью для дополнительного охлаждения двигателя.Если смесь станет слишком богатой, двигатель начнет работать грубо. Во время набора высоты вам нужно наклоняться ровно настолько, чтобы поддерживать плавную работу и при этом оставаться в режиме обогащения.
Если бы у нашего самолета был винт фиксированного шага, такой как Cessna 172, вы бы использовали тот же метод, только вы могли бы наблюдать за тахометром и следить за увеличением оборотов двигателя. Если смесь слишком богатая, должно произойти небольшое увеличение (от 25 до 50) оборотов в минуту, а также более плавная работа. Отсутствие увеличения ни того, ни другого не будет указывать на уже удовлетворительное состояние в полностью обогащенном состоянии и будет причиной для возврата смеси в режим полного обогащения.Выполняйте такую же проверку каждые 2000 футов подъема, каждый раз прекращая процедуру наклона, когда происходит более плавная работа и / или небольшое увеличение оборотов в минуту. (У Cessna 182 пропеллер с постоянной скоростью вращения, поэтому не будет увеличения оборотов в минуту.)
После достижения крейсерской высоты выполните необходимые работы в кабине и дайте дрону набрать максимальную скорость для установленной вами мощности, прежде чем вы попытаетесь наклониться в крейсерском режиме. Это дает достаточно времени для снижения температуры двигателя после набора высоты, а пиковая скорость обеспечивает крейсерский набегающий воздух, на который вам следует наклониться.На данный момент вам доступны два варианта обедненных смесей. Если вы предпочитаете максимальную производительность, наклонитесь почти до шероховатости, а затем постепенно обогащайте смесь, обращая внимание на скорость полета. Максимальная указанная воздушная скорость (IAS) будет иметь место при максимальной мощности смеси. Сначала эта процедура потребует некоторой практики, но со временем вы научитесь в ней неплохо.
Второй вариант — максимальная экономичность и никогда не должен использоваться для крейсерской мощности выше 75 процентов — и никогда для мощности набора высоты.Постепенно откажитесь от богатой, пока двигатель не станет шероховатым. Теперь постепенно обогащайте ровно настолько, чтобы не было неровностей. Максимальная гладкость смеси достигается только при максимальной мощности. После того, как вы довели смесь до нужного уровня, никаких дальнейших изменений не требуется, если настройки мощности двигателя, высота над уровнем моря и окружающие условия остаются неизменными.
Между прочим, шероховатость, связанная с чрезмерно бедной или богатой смесью, является результатом пропусков зажигания в цилиндре. Из-за неравномерности распределения индукции один цилиндр почти всегда приводит к тому, что другие становятся слишком бедными или слишком богатыми, и будут давать пропуски зажигания, вызывая кратковременную неравномерность ритма двигателя, которую мы называем шероховатостью.Такая шероховатость не причиняет непосредственного вреда двигателю, если она не будет продолжаться какое-либо время. Часто пилот наклоняется для максимальной экономии, а затем вскоре после этого переводит регулятор смеси в более удобное положение, опасаясь оказаться слишком бедным.
Что на самом деле слишком худое? Следующие условия применимы к двигателям с прямым приводом без наддува и не обязательно к другим типам. Смесь, не превышающая нормальную, полностью богатая для взлета и набора высоты ниже 5000 футов DA, была бы слишком бедной.В этих рабочих режимах недостаточный расход топлива может вызвать детонацию и внутренний нагрев.
Набор высоты выше 5000 футов DA до крейсерского эшелона должен быть как можно более богатым и при этом обеспечивать плавную работу двигателя. Фактически, это та же смесь, что и при взлете и наборе высоты до 5000 футов DA, только отрегулированная в более наклонное положение, чтобы компенсировать уменьшение плотности воздуха. Последствия неадекватного топлива в районах набора высоты выше 5000 футов DA такие же, как и на уровне моря до 5000 футов, только по мере уменьшения с увеличением высоты.
Чрезмерный наклон на крейсерской мощности, превышающей 75-процентную мощность, приведет к повреждению двигателя из-за перегрева клапанов и повлечет за собой возможность детонации. Вероятность повреждения из-за чрезмерного наклона быстро снижается, когда крейсерская мощность снижается с 75 процентов. Например, вероятность повреждения двигателя из-за переобедненной смеси при 50-процентной мощности значительно меньше, если она вообще существует. Однако переобедненная смесь может засорить свечи зажигания и камеры сгорания из-за пропусков зажигания в цилиндрах.
Многие старые двигатели оснащены выпускными клапанами из нелегированной стали. При нормальной крейсерской мощности (примерно от 50 до 75 процентов) выпускной клапан будет раскаленным в течение периода, когда он открыт и подвергается воздействию горячих газов, выходящих из цилиндра. Если смесь достаточно бедная, чтобы создать окислительную атмосферу, выпускные клапаны обычно будут повреждены. (В бедных смесях всегда присутствует окислительная атмосфера.)
Коррозионно-стойкие клапаны из легированной стали, используемые почти во всех, если не во всех, современных двигателях, не слишком восприимчивы к воздействию окислительной атмосферы.Для этих чувствительных клапанов кислород, присутствующий в отработавших газах, имеет тенденцию соединяться со сталью клапана, когда он достигает накала. Это действие масштабирует внешнюю поверхность клапана и разрушает мелкозернистую поверхность седла клапана, в результате чего клапан начинает протекать. Как только клапан начинает протекать, его рабочая температура повышается еще больше, ослабляя его. Очень высокие температуры сгорания в конечном итоге вызовут образование канавки на лицевой стороне клапана, что потребует его немедленной замены — дорогостоящая цена за скудное количество топлива, которое, возможно, было сэкономлено.
Эти ситуации все еще случаются просто из-за неправильных процедур наклона. Если вы наклонитесь к неровности, а затем вернетесь к точке, где неровности уменьшатся, такое повреждение вряд ли произойдет, особенно когда крейсерская мощность снижается с максимума 75 процентов. Большинство повреждений при наклоне происходит из-за неправильного наклона выше 75% мощности, чаще всего во время набора высоты.
Другой метод проверки смеси крейсерских мощностей после наклона — переключение на одиночный магнето; при такой работе двигатель более критичен к обедненным смесям.Если двигатель демонстрирует лишь небольшую шероховатость и потерю мощности, смесь не является чрезмерно бедной. Необходимо соблюдать осторожность, чтобы не выключить магнето. Если вы случайно полностью выключите зажигание, оставьте его выключенным и переведите дроссельную заслонку в положение холостого хода. Затем включите оба магнето перед подачей питания, чтобы предотвратить обратный индукционный разряд и выхлопные газы.
Оба условия структурно опасны для задействованных систем. Проверка одиночной магнитосмеси ограничена двигателями с прямым приводом и NA, и ее никогда не следует проводить на двигателях с редуктором или с механическим наддувом.
Наклон при спуске — еще один важный этап регулирования смеси. Обогатите смесь, чтобы она соответствовала мощности во время спуска, и если ваша мощность ниже 50 процентов, наилучшим вариантом будет наиболее обедненная смесь, удовлетворительная для плавной работы двигателя. Не забывайте обогащать смесь перед увеличением мощности, когда вы выравниваетесь после спуска. Многие пилоты мастерски выполняют набор высоты и крейсерский крен, а затем доводят смесь до полного обогащения для снижения мощности с высоты, что действительно загрязняет свечи и камеры сгорания.Правильно наклоненный спуск значительно помогает поддерживать ваш двигатель и свечи в постоянной чистоте.
Для взлета с большой высоты (более 5000 футов DA) смесь должна быть обеднена так же, как это делается при наборе высоты, ровно настолько, чтобы избежать чрезмерной неровности и последующей потери мощности. Это может быть выполнено на взлетном крене или удерживанием самолета тормозами и наклоном при полном статическом разгоне.
Руление и наземные операции могут быть улучшены, а образование обрастания значительно уменьшено при посещении высокогорного аэропорта, если смесь используется для наземных операций.(Некоторые новейшие тренажеры, особенно с двигателями с впрыском топлива, почти всегда должны опираться на землю; обратитесь к руководству пилота по эксплуатации.) Дайте двигателю поработать на 1700 об / мин, наклонитесь до неровностей, затем обогатите двигатель ровно настолько, чтобы восстановить плавную работу — затем сбросьте газ до холостого хода. Двигатель должен работать на холостом ходу плавно; может потребоваться дальнейшее обеднение или обогащение для получения наилучших результатов. (Для запуска потребуется немного более богатое положение, особенно при более низких температурах.)
Приведенные здесь процедуры относятся к двигателям с прямым приводом, оборудованным карбюратором, без наддува.Двигатели с впрыском топлива и с турбонаддувом — еще одна игра. Правильная накачка важна для хорошей работы двигателя и окупается не только экономией топлива. Если вы уделите внимание необходимым деталям и правильно проведете регулировку смеси, вы станете богаче, а ваш двигатель будет работать дольше и лучше.
Сохранение вещества и массы
Идея этого фокуса исследована через:
Противопоставление взглядов студентов и ученых
Ежедневный опыт студентов
Для многих студентов идея о сохранении материи не естественна.Они наблюдают, что сахар исчезает при смешивании с водой, большое бревно сгорает до небольшого количества золы, появляются ржавчины автомобилей и большие ямы, вода выкипает, из ниоткуда появляются иней и конденсат, а деревья растут, очевидно, только из почвы.
Студентам может показаться, что материя исчезает или появляется во время таких процессов, как растворение, горение, испарение, кипение, гниение, дыхание, ржавление, конденсация и рост растений. Невидимые газы участвуют во многих из этих процессов, что приводит ко многим из этих альтернативных концепций студентов.
Исследования: Драйвер (1985), Рассел, Харлен и Ватт (1989)
Студенты также часто верят, что материя обменивается или превращается в энергию (например, они считают, что древесина превращается в тепло во время горения, а пища превращается в энергию, когда мы метаболизируем его), или они путают энергию пищи (указанную на пакетах как килоджоули) с весом перечисленных ингредиентов. Студенты также часто считают, что солнечная энергия превращается в растительную материю в процессе фотосинтеза.
Процесс испарения может также бросить вызов представлениям студентов, поскольку многие студенты считают, что вещества становятся легче, если они переходят в газообразное состояние. Если жидкость испаряется внутри герметичного контейнера, они считают, что общий вес контейнера и жидкости будет уменьшен за счет веса жидкости, поскольку она, по-видимому, исчезла.
Исследование: Stavy (1990)
Хотя на этом уровне большинство студентов будут иметь представление о природе атомов в виде частиц, для многих количество атомов не сохраняется во время химических реакций.Например, кажется, что количество атомов в коре деревьев растет, а их количество падает во время таких процессов, как горение или распад, и увеличивается во время фотосинтеза.
Научная точка зрения
Идея неделимых атомов помогает объяснить сохранение материи. Если количество атомов остается неизменным, независимо от того, как они перестраиваются, то их общий вес остается неизменным.
При всех физических и химических изменениях общее количество атомов остается неизменным, следовательно, когда вещества взаимодействуют друг с другом, объединяются или распадаются, общий вес системы остается прежним.
Растущие растения получают новый углерод (большую часть своей сухой массы) из углекислого газа, то есть из воздуха. Когда мы худеем с помощью диеты или упражнений, большая часть потери приходится на выдыхание атомов углерода, которые метаболизируются из нашего жира в виде углекислого газа. Когда жидкость испаряется в запечатанном контейнере, вес остается прежним; на частицы газа действует сила тяжести так же, как и на теннисные мячи, и, следовательно, они ударяются о нижнюю поверхность контейнера с большей силой, чем при ударе о верх.
Предсказание Альберта Эйнштейна о том, что масса может быть преобразована в энергию, было экспериментально подтверждено многочисленными ядерными экспериментами. Следствием этого является то, что утверждение «общий вес системы остается неизменным» является более правильным только очень хорошим приближением для всех неядерных изменений.
Критические идеи обучения
В физических и химических изменениях:
- частицы просто не исчезают и не создаются, скорее их расположение меняется
- при любом изменении, связанном с материей, вся материя должна быть учтена.Материя не превращается в энергию и не появляется из нее.
- частицы перестраиваются для создания веществ, отличных от исходных
- , нет изменения веса, когда вещества входят и выходят из газового состояния.
Изучите взаимосвязь между идеями сохранения массы в Карты развития концепции — (Сохранение материи, состояния материи, потока материи в экосистемах)
В вашем обучении сохранению материи и, следовательно, веса, учащихся необходимо поощрять менять свои взгляды с взглядов, основанных на их повседневном опыте, на более широкие. научные взгляды, такие как идея о том, что в мире есть только фиксированное количество частиц, и эти строительные блоки постоянно перестраиваются в новые вещи.
Это сложная абстрактная идея, и мы можем использовать аналогии, чтобы помочь учащимся ее понять. Например: «Это немного похоже на ведро Lego: вы можете строить много разных вещей, но у вас есть только определенное количество частей Lego, из которых можно это делать». Одна из трудностей заключается в том, что закрытые системы, включающие такие изменения, как горение и дыхание, практически невозможно настроить и взвесить в классе. Вы можете экспериментально опровергнуть лишь некоторые из распространенных альтернативных концепций в этой области.
Исследования: Loughran, Milroy, Berry, Gunstone & Mulhall (2001)
Важно обсудить различные ситуации изменений, которые, как представляется, связаны с несохранением материи, и вернуться к этому вопросу в других темах, таких как экосистемы, продукты питания. и диета, и источники энергии. Учащимся следует поощрять делать прогнозы об этих процессах в благоприятной классной среде, где им могут помочь разработать новые теории, критически проанализировать свое понимание и понимание других и сравнить их с научными взглядами, представленными учителем.Легче попытаться исключить альтернативные концепции, которые могут быть сначала проверены экспериментально, а затем студенты придут к пониманию научной модели как той, которая может лучше всего объяснить широкий спектр явлений.
Обсуждение учащимися того, как изменились их взгляды, будет ценным компонентом достижения долгосрочных концептуальных изменений у учащихся и понимания научных объяснений.
Исследования: Лофран, Милрой, Берри, Гунстоун и Малхолл (2001)
Педагогическая деятельность
Учащиеся должны обсуждать и наблюдать явления, при которых наблюдается явное изменение веса, и им следует искать альтернативные объяснения.
Способствовать осмыслению и разъяснению существующих идей и позволить учащимся увидеть, как изменились их идеи
Попросите учащихся записать и сохранить свои взгляды на ряд ситуаций, например:
- Свежий труп запечатан в герметичное подземелье. 100 лет спустя труп превратился в скелет. Общая масса подземелья, трупа и прочего содержимого увеличивается, уменьшается или остается неизменной? Куда девается плоть?
- Представьте себе горящую кучу дров в запечатанном помещении.Увеличивается ли общая масса комнаты и ее изделий, уменьшается или остается неизменной? (См. Дерево, растущее в коробке, ниже).
Начать обсуждение посредством обмена опытом и способствовать размышлению и прояснению существующих идей
Действия POE (Predict -Observe-Explain) могут быть полезны как для выявления предшествующих взглядов учащихся, так и для переосмысления этих концепций.
Попросите учащихся предсказать, что произойдет, если материалы (например, стальная вата или магний) будут сожжены.Затем учащиеся должны взвесить материалы до и после сжигания, убедившись, что все продукты горения сохраняются. Обратите внимание, что эти эксперименты не доказывают, что общий вес сохраняется в закрытой системе. В этом случае система открыта, и общий вес стальной ваты / магния увеличивается, поскольку они соединяются с кислородом воздуха. Эти эксперименты убедительно показывают, что при сгорании не всегда теряется вес, и, следовательно, представление о превращении материи в тепло не является жизнеспособным.
Аналогичным образом исследуем, что происходит при испарении. Взвесьте плотно закупоренную колбу, содержащую 1-2 мл ацетона, медленно нагрейте и снова взвесьте. (Студенты часто предсказывают, что вес колбы уменьшился, потому что газы легче жидкостей или молекулы больше не сидят на дне.)
Содействовать размышлению и разъяснению существующих идей
Устные обсуждения (когда учитель откладывает оценку «неправильные» комментарии) могут позволить учащимся рассмотреть и переосмыслить свои взгляды (после просмотра приведенных выше изменений и многих других, которые можно придумать).
Уточняйте и объединяйте идеи для / путем общения с другими
На основе описанных выше действий небольшие группы учеников могли бы сделать плакаты и представить их классу, чтобы поделиться своими идеями и объяснениями.
Начать обсуждение посредством обмена опытом и способствовать размышлению и разъяснению существующих идей
Студент может взвесить несколько таблеток антацида и небольшую бутылку безалкогольного напитка, наполненную водой, по отдельности, чтобы определить их общий вес.Затем таблетки добавляют в воду, флакон быстро закрывают и повторно взвешивают после того, как таблетки полностью растворятся. Вес «до» и «после» должен быть одинаковым, даже если таблетки полностью исчезли и образовался газ. Предложите студентам обсудить результаты и высказать свое мнение о том, насколько эти результаты согласуются с их взглядами на сохранение материи или оспаривают их.
Способствовать осмыслению и разъяснению существующих идей
Другая проблема, которая проверяет понимание студентами теории сохранения материи, заключается в следующем: внутри большого запечатанного стеклянного ящика много влажной почвы, резервуар для воды с капельным орошением и семя быстрорастущего дерева.Ящик помещается на солнце на год, и внутри ящика растет дерево. Учащимся задают вопрос, будет ли общий вес коробки и ее содержимое увеличиваться, уменьшаться или оставаться неизменными в течение года роста дерева.
Преподавательская деятельность — Понимание теории сохранения материи | |
---|---|
Изображение 1 показывает начало дерева как семя. | |
На изображении 2 показано, что год спустя выросло дерево. |
Еще один вариант, который следует рассмотреть: не открывая коробку, дерево поджигается. После сжигания изменится ли вес ящика? Что произойдет с количеством атомов до и после обоих этих изменений?
Разъяснение и объединение идей для / путем общения с другими
Попросите студентов рассмотреть следующую ситуацию: ваша рука состоит из атомов углерода (содержащихся в молекулах белка). Рассмотрим один из этих атомов углерода, назовем его «Гилберт».Предположим, что миллион лет назад Гилберт был в травинке. Напишите возможную историю Гилберта за последний миллион лет. В своем ответе укажите как можно больше процессов.
Представляя это задание, предупредите учащихся, что они, скорее всего, вернутся к своим предыдущим представлениям. (Очень немногим ученикам удается написать эту историю, не опираясь на свои предыдущие взгляды и не записывая то, что противоречит тому, чему их только что научили. Распространенная ошибка — вернуться к убеждению, что растения черпают большую часть материала, необходимого для роста, из растений. почва, причем Гилберта неоднократно возвращали в почву в результате разложения мертвого органического материала, а затем извлекали из почвы другим растением).Для студентов, которые возвращаются с рассказами, демонстрирующими очень мало знаний о том, что они только что узнали, попробуйте объяснить, почему они написали рассказы таким образом.
Поощряйте размышления о том, как изменились идеи студентов
Попросите студентов еще раз взглянуть на свои взгляды на сценарии, связанные с распадом и горением, и подумать, изменили ли они свои взгляды. Если да, спросите их, как бы они изменили свои ответы на ситуации и почему они бы изменили их. (Никогда не оценивайте их первоначальные ответы, но можно оценить рефлексивные ответы во второй раз).
Студенты также могли сформулировать свои собственные гипотезы об изменениях веса при сжигании, дыхании и фотосинтезе и провести исследования, чтобы подтвердить или опровергнуть их.
Дополнительные ресурсы
Интерактивные обучающие объекты, связанные с наукой, можно найти на Страница ресурсов для учителей FUSE.
Чтобы получить доступ к интерактивному объекту обучения ниже, учителя должны войти в FUSE и выполнить поиск по идентификатору учебного ресурса:
- Химические реакции: горение — студенты исследуют химические реакции на молекулярном уровне.Они разбивают молекулы кислорода и другого вещества на составляющие их атомы и перестраивают их, чтобы образовать молекулы новых веществ. Например, они исследуют, как метан сгорает в кислороде с образованием углекислого газа и воды. Они также определяют количество молекул каждого вещества, необходимое для балансировки химического уравнения.
Идентификатор учебного ресурса: HY5GUN
Химические реакции
Основные идеи о толчках и толчках исследуются в
.Противопоставление взглядов студентов и ученых
Ежедневный опыт студентов
Дети испытали множество примеров химических изменений, даже не осознавая этого.Они знакомы с процессами горения, приготовления пищи, ржавления и химическими процессами, которые предполагают растворение. Однако на этом уровне ученики не видят, что новые материалы производятся в результате химических изменений, скорее они видят, что существующие материалы просто каким-то образом были изменены. Например, они видят дым как часть дерева, который каким-то образом выделяется при горении дерева. Поскольку учащиеся редко понимают понятие «вещество», они не видят изменения веществ. Тем не менее, понимание химических изменений является фундаментальным для понимания роли химии в их жизни, и на этом уровне студенты могут начать это понимать.
Студенты часто считают, что для того, чтобы получить что-то новое, нужно просто смешать все вместе. Когда химическая реакция действительно имеет место, они считают, что тот или иной реагент просто модифицируется; на самом деле это не изменилось. Например, ученики считают, что ржавчина по-прежнему остается железом / сталью; он только что стал коричневым. Точно так же обычно не замечают отслаивания ржавчины — считается, что утюг просто исчезает. Пузырьки газа, которые часто образуются при растворении таблетки в воде, часто не воспринимаются студентами как новое вещество.Такие процессы, как смешивание с водой, использование красителей в пище, замораживание и кипячение, считаются аналогичными химическим изменениям, которые происходят при приготовлении яиц.
Исследование: Johnson (2002)
Дети часто считают, что при сгорании такие материалы, как дерево или бумага, просто исчезают — в конце концов, от продукта остается не так уж много материала. По их мнению, воздух имеет мало общего с горением. Студенты считают, что при сжигании углеродных материалов, таких как дерево, древесный уголь (углерод) появляется из горит , а не материал .
Исследование: Государственный университет штата Аризона (2001)
Поскольку многие дети знают о таких вещах, как приготовление пищи и сжигание, они предполагают, что тепло всегда необходимо для возникновения реакций.
В обиходе слово «химический» часто используется как ярлык для нежелательных вещей, которых не должно быть в пищевых продуктах или косметике. Следовательно, учащиеся могут рассматривать химические вещества как группу веществ, обнаруженных в лабораториях, а не рассматривать все вещества в продуктах питания (например) как химические вещества.
Научная точка зрения
Все материалы сделаны из химикатов. Химические реакции включают взаимодействие между химическими веществами, так что все реагенты превращаются в новые материалы. Свойства новых материалов отличаются от свойств реагентов. Это отличается от других изменений, таких как испарение, плавление, кипение, замораживание и перемешивание, при которых изменения не связаны с новыми веществами. Хотя для начала реакций часто требуется тепло, это не обязательно.
Химические реакции включают разрыв химических связей между молекулами реагента (частицами) и образование новых связей между атомами в частицах продукта (молекулах).Число атомов до и после химического изменения одинаково, но число молекул изменится.
Хотя многие химические реакции протекают быстро, небольшие, медленные изменения, такие как ржавление или биологические процессы, могут происходить в течение гораздо более длительных периодов времени.
Химические реакции обратимы (факт, который часто опускается во многих научных текстах), но на практике они больше всего отличаются от других наблюдаемых детьми изменений, таких как плавление, тем, что их очень трудно обратить вспять.
Люди используют химические реакции для производства широкого спектра полезных материалов; разложение отходов также включает химические реакции, которые происходят естественным образом в окружающей среде.Для некоторых антропогенных отходов таких реакций нет, и в результате они вызывают проблемы.
Критические идеи преподавания
При обучении химическим реакциям на этом уровне акцент должен делаться на улучшении понимания учащимися важности химических реакций в нашей жизни в производстве многих вещей, которые мы считаем само собой разумеющимися, а также на улучшении их понимания и понимания что вовлечено в химическое изменение. На данном этапе нет необходимости говорить о таких частицах, как атомы или молекулы, или о химических связях.
- Химические реакции включают производство новых материалов, которые сильно отличаются от реагирующих веществ. Любые новые материалы происходят из реагирующих веществ.
- Изменения, которые могут сопровождать химическую реакцию, включают цвет, внешний вид и образование новых материалов, например, газа.
- Само по себе смешивание не может вызвать химическую реакцию.
- Хотя для инициирования химической реакции часто требуется тепло, это не всегда необходимо.
- Химические реакции используются для производства большей части нашей энергии.
- Химические реакции широко используются для тестирования, идентификации и анализа широкого спектра материалов (например, комплекты для тестирования бассейнов и судебно-медицинские тесты из телешоу, таких как « CSI» ).
- Кислород в воздухе является очень реактивным химическим веществом и играет важную роль во многих химических реакциях, таких как горение, ржавление и реакции, посредством которых мы получаем энергию из пищи, которую едим.
Изучите взаимосвязь между идеями о химических реакциях в Карты развития концепции — (атомы и молекулы, химические реакции, сохранение материи, состояния материи)
При изучении химических реакций учащимся нужно будет описывать различные вещества, которые на этом уровне будут материалами, с которыми они знакомы (кухня и изменения, связанные с приготовлением пищи, являются очень хорошей отправной точкой).Им нужно будет уметь идентифицировать изменения в этих веществах с целью в конечном итоге распознать, когда были произведены новые химические вещества, то есть произошло химическое изменение. Как упоминалось выше, это может быть сложно, поскольку студенты часто не видят разницы между яичным белком, переходящим из жидкого в твердое состояние в процессе приготовления, и такими изменениями, как таяние шоколада или кипячение воды, которые не связаны с химическими изменениями. Обучение должно быть сосредоточено на том, что происходит, когда образуются новые вещества.
Эти идеи также рассматриваются в идее фокуса Проблемы с классификацией.
Также можно учитывать воздействие химических реакций на окружающую среду, например, как мы утилизируем некоторые химические вещества после их производства в таких формах, как пластиковые пакеты.
Начать обсуждение через обмен опытом
Первоначальная педагогическая деятельность должна быть направлена на выявление существующих идей учащихся. На этом этапе важно, чтобы учащихся поощряли высказывать свои идеи и обсуждать их в небольших группах.Все альтернативы следует рассматривать без разрешения на данном этапе.
Начальным действием может быть наблюдение за горением свечи и обсуждение происходящих изменений. Здесь можно различить плавление воска и появление новых материалов. Можно задать следующие вопросы:
- что происходит с воском?
- что горит?
- как вы думаете, куда идет воск?
- не могли бы вы забрать его снова?
- Это тот же процесс, что и испарение воды?
- горела бы свеча, если бы вокруг не было воздуха?
- воздух или часть воздуха израсходованы при горении свечи?
Содействовать размышлению и разъяснению существующих идей
Действия, которые ставят проблемы для изучения и оспаривают существующие идеи, полезны для поощрения студентов к поиску новых объяснений наблюдаемых ими вещей.Студенты должны изучить ряд изменений и задать вопросы, аналогичные приведенным выше. Во всех этих случаях студентов следует поощрять наблюдать за происходящими изменениями и определять, какие продукты образуются. Обсуждение также может быть сосредоточено на том, чем они отличаются от исходных материалов. Вот несколько примеров:
- Пищевая сода и уксус в стеклянной бутылке с пробкой — почему пробка отлетает?
- Добавьте бикарбонат соды в стакан с уксусом и шестью смородинами.Почему смородина движется вверх и вниз? Какие пузыри? Откуда берутся пузыри?
- Приготовление щербета — смешайте четыре части сахарной пудры, две части лимонной кислоты и одну часть пищевой соды (все это можно приобрести в супермаркетах). Студенты кладут небольшое количество смеси на язык. Что вызывает шипение? Выделяет ли какой-либо порошок сам по себе шипение?
- Наполните банку стальной мочалкой (без мыла) наполовину и добавьте уксуса, чтобы покрыть стальную мочалку. Оставьте на пять дней.Вылейте одну столовую ложку полученной жидкости во вторую банку. Добавьте одну чайную ложку нашатырного спирта и перемешайте. Образуется темно-зеленая клейкая ткань. Опять же, студентов следует попросить подумать о том, что происходит, с упором на развитие понимания того, что создаются новые материалы.
- Изготовление карамели — студентам предлагается изучить сахар. Нагрейте концентрированный сахарный раствор, наблюдая за изменениями по пути — растворение сахара, затем потемнение. Карамелизация включает в себя ряд химических изменений.(Существует множество рецептов карамели — для улучшения вкуса, внешнего вида и текстуры можно добавить масло, пищевую соду и соль). Студентов следует поощрять искать доказательства химических изменений, а не плавления.
Практикуйтесь в использовании и создайте воспринимаемую полезность научной модели или идеи
Другие виды деятельности могут включать изготовление шоколада. Учащимся можно предложить поискать различия между приготовлением шоколада, где шоколад тает, и производством карамели / ириса, когда сахар превращается во что-то другое.
Есть много других подобных химических изменений, которые можно исследовать — дальнейшая кулинарная деятельность может включать: приготовление шоколадного торта, плавление и подрумянивание сыра, изготовление сот, выпечку хлеба, приготовление яиц-пашот и приготовление тостов. Другие изменения могут включать настройку двухкомпонентных клеев, таких как Araldite и смешивание стальной ваты и раствора медного купороса (можно приобрести в питомниках растений). Кислород является очень важным реагентом во многих химических реакциях, и студенты могут исследовать изменения, связанные с этим компонентом воздуха.
Уточнение и объединение идей для / путем общения с другими
На этом этапе важно уточнить и закрепить то, что наблюдали студенты, и сосредоточиться на том, что происходит в химической реакции, которая отличается от плавления, кипения и замораживания. Для достижения этой цели студентов можно попросить в группах сделать мини-плакаты, которые показывают изменения, происходящие в одной или нескольких реакциях, которые они наблюдали, в частности сравнивая продукты с исходными материалами и демонстрируя, чем они отличаются.Этому можно способствовать, используя новые названия продуктов, такие как «сажа» или «углекислый газ». Затем студенты представляют свои плакаты классу.
Итоговое обсуждение в классе должно выявить идеи учащихся, изучить альтернативы и перейти к более общепринятым научным взглядам на химические реакции.
Должны быть выполнены задания, которые проверят полезность модели химических реакций и дополнительно укрепят представления учащихся о том, что представляет собой химическая реакция. Студентов можно также побудить сравнить продукты с исходными материалами.Например, студенты могут исследовать ржавление стального гвоздя в различных условиях (например, в воздухе / воде / соленой воде).
Для дальнейшего развития понимания учащимися роли химических изменений в их жизни, они могли бы исследовать производство металлов из руд (таких как алюминий и сталь) или производство пластмасс и синтетических волокон. Акцент в этом исследовании делается на важности химических изменений в производстве материалов, которые мы используем каждый день.
Дополнительные ресурсы
Интерактивные обучающие объекты, связанные с наукой, можно найти на Страница ресурсов для учителей FUSE.
Чтобы получить доступ к интерактивному объекту обучения ниже, учителя должны войти в FUSE и выполнить поиск по идентификатору учебного ресурса:
- Mystery Substances: ваш первый случай — студенты раскрывают полицейские дела, определяя чистые вещества и компоненты смесей. Они проводят химические испытания загадочного вещества, такого как соль, пищевая сода или сахар, а также наблюдают и записывают, как каждое вещество реагирует с рядом жидкостей и при нагревании. Затем они обращаются к своей таблице данных о химических свойствах и используют ее для сопоставления загадочного вещества или веществ, обнаруженных на месте преступления.Этот учебный объект является одним из пяти объектов.
Идентификатор учебного ресурса: K6ZRNX
- Загадка сокровищ — ученики должны открыть металлическую дверь в сокровищницу, растворив ее кислотами. Они проверяют повседневные вещества, чтобы определить, какие из них являются кислотами: лимонный сок, соленая вода, алкоголь, уксус, вода и газированные безалкогольные напитки. Они видят, реагируют ли вещества с яичной скорлупой, лакмусовой бумагой, бикарбонатом натрия или зубами.
Идентификатор учебного ресурса: 46X2PX
- Спасите озеро — Рыбы умирают в озере из-за загрязнения воды.Студенты проверяют воду в озере с помощью химических индикаторов, чтобы выяснить, какая отрасль является причиной загрязнения. Затем они предлагают изменения, чтобы спасти озеро.
Идентификатор учебного ресурса: MW25YS
Центр данных по альтернативным видам топлива: Biodiesel Blends
Биодизель можно смешивать и использовать во многих различных концентрациях. Наиболее распространены B5 (до 5% биодизеля) и B20 (от 6% до 20% биодизеля). B100 (чистый биодизель) обычно используется в качестве смеси для получения более низких смесей и редко используется в качестве транспортного топлива.
Низкоуровневые смеси
ASTM International разрабатывает спецификации для широкого спектра продуктов, включая обычное дизельное топливо (ASTM D975). Эта спецификация позволяет называть биодизельное топливо с концентрацией до B5 дизельным топливом без необходимости отдельной маркировки на насосе. Смеси биодизельного топлива с низким уровнем содержания, такие как B5, одобрены ASTM для безопасной работы в любом двигателе с воспламенением от сжатия, предназначенном для работы на нефтяном дизельном топливе. Это могут быть легковые и тяжелые дизельные автомобили и грузовики, тракторы, лодки и электрические генераторы.
B20
B20 — это обычная смесь, потому что она представляет собой хороший баланс стоимости, выбросов, характеристик в холодную погоду, совместимости материалов и способности действовать как растворитель. Большинство пользователей биодизеля покупают смеси B20 или ниже у своих обычных дистрибьюторов топлива или у продавцов биодизеля. Регулируемые автопарки, использующие смеси биодизеля с содержанием 20% или выше, имеют право на получение кредитов на использование биодизельного топлива в соответствии с Законом об энергетической политике 1992 года.
B20 должен соответствовать установленным стандартам качества, установленным ASTM D7467.Управление автомобильных технологий Министерства энергетики США по вопросам энергоэффективности и возобновляемых источников энергии поддержало работу по тестированию и улучшению качества биодизеля, помогая большему количеству топлива соответствовать стандартам ASTM.
Как правило, смеси B20 и более низкого уровня могут использоваться в современных двигателях без модификаций. Фактически, многие производители оригинального оборудования для дизельных двигателей (OEM) одобряют использование B20 (см. Информацию OEM Национального совета по биодизелю для тех, кто поддерживает использование смесей биодизеля).Перед использованием биодизеля пользователи должны всегда сверяться с условиями гарантии на свой автомобиль и двигатель. Для получения дополнительной информации об использовании биодизеля в транспортных средствах, одобренного производителем оборудования, см. Руководство по обращению с биодизелем и его использованию.
Двигатели, работающие на B20, имеют такой же расход топлива, мощность и крутящий момент, что и двигатели, работающие на дизельном топливе. B20 с содержанием биодизеля 20% будет иметь на 1–2% меньше энергии на галлон, чем дизельное топливо, но многие пользователи B20 не сообщают о заметной разнице в производительности или экономии топлива.Биодизель также имеет некоторые преимущества по выбросам, особенно для двигателей, выпущенных до 2010 года. Для двигателей, оснащенных системами избирательного каталитического восстановления (SCR), преимущества для качества воздуха одинаковы, независимо от того, работают ли они на биодизельном или нефтяном дизельном топливе.
Однако биодизельное топливо по-прежнему дает больше преимуществ в отношении парниковых газов, чем обычное дизельное топливо. Выгода по выбросам примерно соизмерима с уровнем смеси; то есть, у B20 будет 20% выгоды от сокращения выбросов B100.
B100 и смеси высокого уровня
B100 и другие смеси биодизельного топлива с высоким уровнем содержания встречаются реже, чем смеси B20 и более низкие смеси из-за отсутствия нормативных стимулов и цен. Совместимый с биодизелем материал для некоторых деталей, таких как шланги и прокладки, позволяет использовать B100 в некоторых двигателях, построенных с 1994 года. B100 обладает эффектом растворителя; он может очищать топливную систему автомобиля и удалять отложения, накопленные при использовании дизельного топлива. Выделение этих отложений может первоначально засорить фильтры и потребовать частой замены фильтров в первых нескольких резервуарах для высокоуровневых смесей.
При использовании смесей высокого уровня следует учитывать несколько факторов. Чистый биодизель содержит меньше энергии в расчете на объем, чем нефтяное дизельное топливо. Следовательно, чем выше процентное содержание биодизеля (выше 20%), тем ниже содержание энергии на галлон. Смеси биодизеля с высоким содержанием биодизеля также могут повлиять на гарантии двигателя, загустеть при низких температурах и могут создавать уникальные проблемы при хранении. Использование B100 также может увеличить выбросы оксида азота, хотя значительно снижает другие токсичные выбросы.
B100 требует особого обращения и может потребовать модификации оборудования. Чтобы избежать проблем с эксплуатацией двигателя, B100 должен соответствовать требованиям ASTM D6751, Стандартные технические условия на биодизельное топливо (B100), смеси для дистиллятных топлив (краткое изложение требований). Спецификация ASTM D6751 включает сорт № 1-B и № 2-B. Марка №1-B имеет более строгие ограничения по моноглицеридам и фильтруемости, чем сорт №2-B. Марка №1-B — это специальный сорт биодизеля для использования в приложениях, где требуется работоспособность при низких температурах.
Найдите станции заправки биодизелем. Используйте Отчет о ценах на альтернативное топливо, чтобы понять стоимость биодизеля.
.